教授
所在位置 网站首页 > 师资队伍 > 专任教师 > 教授 > 正文
张中新

职称:教授

职务:

学历:博士

电子邮件:lumengzh@xmu.edu.cn

联系电话:0592-2580731

办 公 室:数学物理大楼502

教育经历:

2001年在吉林大学数学研究所获得博士学位。

1995年在吉林大学数学研究所获得硕士学位。

1992年在吉林大学数学系获得学士学位。

工作经历:

2002年7月至今在澳门太阳集团com工作。

1995年7月至2002年7月在吉林大学数学系工作。


研究方向:

边界层理论及非线性分析

主要包括流体力学中的数学问题及其数学理论,边界层问题的相似解模型的建立及其理论研究, 常微分方程边值问题,常微分方程渐近分析和边界层问题的数学理论等。

授课情况:

讲授:数学分析I、数学分析II、数学分析III、高等数学。

主持项目:

国家自然科学基金青年科学基金课题一项

福建省自然科学基金课题一项。

论文:


1. Similarity solutions to the MHD boundary layer equations with a negative parameter for power-law fluids, Computers and Mathematics with Applications, 78 (2019) 2806–2816.

2. Normal solutions of a boundary-value problem arising in free convection boundary-layer flows in porous media, Applied Mathematics and Computation 339 (2018) 367–373.

3.  A two-point boundary value problem arising in boundary layer theory, J. Math. Anal. Appl., 417 (2014) 361--375.

4.  Similarity solutions of a boundary layer problem with a negative parameter arising in steady two-dimensional flow for power-law fluids, Nonlinear Analysis, 102(2014), 1--13.

5. Concave solutions of a general self-similar boundary layer problem for power-law fluids, Nonlinear Analysis: Real World Applications,13(2012), 2708--2723.

6.Convex solutions of a general similarity boundary layer equation for power-law fluids,J. Math. Anal. Appl., 361,(2010), 96-107

7.Self-similar solutions of the magnetohydrodynamic boundary layer system for a non-dilatable fluid, ZAMP,60(2009),621-639。

8. On the similarity solutions of magnetohydrodynamic flows of power-law fluids over a stretching sheet, J. Math.Anal. Appl., 2007, vol. 330(1), 207-220.

9. Self-similar solutions of the magnetohydrodynamic boundary layer system for a dilatable fluid, Acta Mechanica, 2007, vol. 188(1-2), 103-119.

10. Exact self-similar solutions of the magnetohydrodynamic boundary layer system for power-law fluids, Z. angew. Math. Phys., vol. 58(5), 805-817, 2007. 7.

11.  Semilinear elliptic boundary value problems on bounded multiconnected domains, Electronic J. Differential Eqution, 2005, vol. 7, 1-11

12.  A boundary layer problem arising in gravity-driven laminar film flow of power-law fluids along vertical walls, Z. angew. Math. Phys., 2004, vol. 55, 769-780.

13. On existence and multiplicity of positive solutions to singular multi-point boundary value problem, J. Math. Anal. Appl., 2004, vol. 295, 502-512.

14. On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations, J. Math. Anal. Appl., 2003, vol. 281, 99-107.

15. Positive Solutions to a Second Order Three-Point Boundary Value Problem, J. Math. Anal. Appl., 2003, vol. 285, 237--249.

16. The upper and lower solution method for a class of singular nonlinear second order three-order boundary value problems, J. Comp. Appl. Math. 2002, vol. 147, 41—52.